
Hybrid Data Tomography: Winter School and
Workshop

On Thursday and Friday, January 25–26, 2018, participants of the winter
school are offered to work in small groups of 2-3 people on a project from suggested
or their own topics. Proposed topics include a short description and a list of ideas
to explore. However, participants are not required to answer all suggested ques-
tions. Furthermore, the projects are open-ended and participants are encouraged
to explore any aspects which appeal to them, with the project descriptions pro-
viding ideas. Theoretical or computational studies on the chosen topics should be
documented in a short report (5-10 pages) and handed in at the latest on February
2, 2018. For implementing computational tasks, sample codes written in Python
using the library FEniCS will be provided at the winter school. To get started
with FEniCS, follow instructions at https://fenicsproject.org/download/.
However, participants are welcome to use any programming language they wish.
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Project 2: Hybrid Data Tomography

Assume, that the electrical potential u and conductivity σ satisfy the electrostatic
equation

div (σ∇u) = 0 , in Ω ,

u|∂Ω = g ,
(1)

where Ω ⊂ RN is a bounded Lipschitz domain, N ≥ 2. Consider the inverse prob-
lem of Acousto-Electrical Tomography (AET), which aims at identifying the unknown
conductivity σ from internal data of the power density [1, 5, 6].

(a) Download a Python code with the forward solver using the library FEniCS from
organizers of the winter school. Simulate and plot the interior data of the power
density by computing

Ei(σ) := σ|∇ui(σ)|2 , (2)

where ui is a solution of (1) from different boundary functions gi, i = 1, . . . ,M ,
and predefined conductivity σ of your choice.

https://fenicsproject.org/download/


(b) The inverse problem AET can be written in the operator form

F (σ) = E , (3)

where the nonlinear operator is introduced by

F : D(F ) :=
{
σ ∈ H2(Ω)| σ ≥ σ > 0

}
→ L2(Ω), σ 7→ E(σ) . (4)

The problem can be solved using one of iterative regularization methods [3, 4],
which typically require computation of the Fréchet derivative. Assume that op-
erator F is Fréchet differentiable. Show that its Fréchet derivative is given by

F ′(σ)h = h |∇u(σ)|2 + 2σ∇u(σ) · ∇(u′(σ)h) , (5)

where u′(σ)h is a Fréchet derivative of the electric potential u given as the unique
solution of the variational problem∫

Ω

σ∇(u′(σ)h) · ∇v dx = −
∫
Ω

h∇u(σ) · ∇v dx , ∀ v ∈ H1
0 (Ω) . (6)

(Hint: Under some smoothness assumption on the domain Ω and the boundary
data g (give an example), the solution u is in H2(Ω) (regularity)). Generalize (5)
to multiple measurement case.

(c) Given the model (1), reconstruct the conductivity σ from the true power density
E obtained in step (a) linearizing the problem around σ0

F ′(σ0)σ = E − F (σ0) + F ′(σ0)σ0 . (7)

For ease of derivation and implementation use the so-called “discretize-then-
optimize” approach, i.e., work in a finite dimensional setting, discretize the prob-
lem then solve it. Note that regularization might be necessary for solving the
problem. For implementation, derivatives (5) and (6) can be found in the pro-
vided Python code.

(d) Given the model (1), reconstruct the conductivity σ from the true power density
E obtained in step (a) using Landweber iteration

σδk+1 = σδk + ωδk(σ
δ
k)F

′(σδk)
∗(Eδ − F (σδk)) , (8)

where for the stepsize ωδk one can use the steepest descent stepsize

ωδk(σ) :=

∥∥F ′(σ)∗(Eδ − F (σ))
∥∥2

‖F ′(σ)F ′(σ)∗(Eδ − F (σ))‖2 . (9)

For implementation, derivatives (5) and (6) can be found in the provided Python
code. Derive the adjoint of the Fréchet derivative of F . (Hint: first derive it
in the L2 scalar product, i.e., find an operator G such that 〈F ′(σ)h,w 〉L2(Ω) =

〈h,G(σ)w 〉L2(Ω). Then, if time allows, try H2). Implement Landweber iteration,
first, for one measurement of the power density, then generalize it for multiple
measurements.



(e) Reconstruct the unknown conductivity σ from the noisy measurements Eδ ∈
L2(Ω) provided by organizers of the winter school. The data are done using
FEniCS and saved in ”.mat” files as arrays. Each element of the array corresponds
to a coordinate in provided ”.xml” mesh file.
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